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Abstract. We apply the variational lower-bound renormalization group transformation of 
Kadanoff to an SU(2) lattice spin model in two and three dimensions. Even in the 
one-hypercube framework of this renormalization group transformation the present model 
is characterized by having an infinite basis of fundamental operators. We investigate whether 
the lower-bound variational renormalization group transformation yields results stable 
under different truncations of this operator basis. Our results show that for this particular 
spin model this is not the case. 

1. Introduction 

The variational lower-bound renormalization group transformation ( LBRG) introduced 
by Kadanoff [l,  21 is known to give surprisingly accurate results for the critical 
behaviour of almost all spin models on which it has been applied (see e.g. [3] for a 
rather exhaustive review of the results obtained until around 1982). In  the case of 
discrete-spin models for which comparison can be made with exact solutions, the 
agreement is typically in the range of 1-2%. There are, however, also known problems 
with the method. Indeed, attempting to improve the LBRG by a more consistent choice 
of the variational parameter of the transformation leads to worse agreement with 
exactly known answers [4]. Still, overall the results obtained by the LBRG are very 
impressive. Recently the method has even been extended to systems with local gauge 
invariance and, for some discrete gauge groups at least, the technique yields results 
accurate to within a few per cent [5]. 

One very appealing feature of the LBRG is that it automatically becomes a one- 
hypercube approximation. For discrete models the basis of operators is then finite, 
and  one obtains a closed set of recursion relations among a finite (typically quite small) 
set of coupling constants. 

One obvious question is how the LBRG performs if the basis of operators, even on 
just one hypercube, is infinite. We know o f  at least one such model which has been 
studied in this approximation, the two-dimensional X Y  model [6] t .  This is, however, 
an  extremely difficult model to analyse from a local real-space renormalization group 

t Another interesting model kith a continuous variable, somewhat similar to the model under study here, 
has been considered in [7]. However, in that case a projection down to a discrete Z(2)  invariant Ising-like 
model was made as an initial step. Thus the L B R G  could proceed as usual, once this mapping had been 
performed. 
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point of view, since the infinite-order phase transition there is believed to be driven 
by interactions among extended objects-vortices. In fact, the LBRG instead gives (in 
the approximation of [6]) a usual second-order phase transition with ordinary critical 
exponents. However, the ZD X Y  model is indeed very special (an  ordinary second-order 
phase transition is forbidden by the Mermin-Wagner theorem since the symmetry that 
gets broken is U ( l ) ,  i.e. continuous) and  cannot be viewed as a typical spin model 
with an infinite set of couplings. 

In this paper we shall describe the results of applying the L B R G  to another continuous 
spin model; an  effective Polyakov line action of finite temperature SU(2) lattice gauge 
theory [8]. The partition function of this model is given by 

where Yeff( W) is an effective action of nearest-neighbour couplings 

W) =+.I C {Tr( W ( x ) )  Tr( W' (x+ j ) )+Tr (  W7(x) )  Tr( W ( x + j ) ) }  (1.2) 

and  the partition-function integral is performed over the SU(2) Haar measure. Although 
we shall not be concerned here with the original motivation for studying this model 
(it describes the physics of finite temperature deconfinement phase transitions for, in 
general, S U ( N )  gauge theories), we shall only point out that it can be derived by a 
strong coupling character expansion of the lattice-regularized SU( 2 )  (or, in general, 
S U ( N ) )  gauge theory of action 

Y.J 

Here the sum runs over elementary plaquettes on a d-dimensional lattice, and the 
(oriented) plaquette (in the p-v plane) is given by 

(1.4) 

in a hopefully obvious notation. 
The partition function of this lattice gauge theory is given by the integral of exp{Y} 

over the Haar measure of all link variables U,. Finite temperature in this Euclidean 
quantum field theory is imposed by requiring periodicity in the temporal direction; 
with unit lattice spacing we simply have T =  l /N7,  where N ,  equals the number of 
links in the time direction. 

U, = U, ( x ) U ,  ( x + p ) U ;  ( x + p + v ) ul', ( x + v ) 

With this notation, the coupling constant of the effective action is given by 

where Z,(x) is the modified Bessel function of order n, and 
'\ 

W(x)  = n Uo(x, T )  
T i l  

but we shall not in the following refer back to the origin of this effective lattice theory. 
However, we shall always keep in mind that we are dealing with, in this particular 
case, SU(2)-valued 'spin' variables. 

At a possible phase transition it is not the local SU(2) invariance, but rather a 
global Z ( 2 )  symmetry, that gets spontaneously broken [ 9 ] .  That the effective action 
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(1.2) possesses such a Z(2) invariance is clear since W ( x )  -+ - W ( x )  for all x obviously 
is a symmetry of the action. It is also a symmetry of the measure since Z(2) c SU(2), 
and the Haar measure is invariant under both left and right SU( 2)-valued multiplication. 
It follows that Tr W ( x )  is a good order parameter for this Z(2)-breaking phase 
transition. 

Ideas of universality have been put forward to understand these deconfinement 
phase transitions [IO] of (d + 1)-dimensional SU( N )  lattice gauge theories in terms 
of d-dimensional Z( N )  spin systems with short-range spin-spin interactions. The 
effective Polyakov line action (1.2) can be viewed as one explicit step in this direction. 
Still, although the action [1.2] for SU(2) resembles an Ising model (albeit with 
SU(2)-valued 'spins'), the Boltzmann weight is integrated with the full SU(2) Haar 
measure. It is therefore a priori not completely obvious that even if the model (1.2) 
has a second-order phase transition, it should belong to the Ising fixed point. This 
originally served as our motivation for trying to understand this model within an 
accurate analytical renormalization group scheme, such as the LBRG. But first we had 
to investigate to what extent, if at all, the LBRG is a useful framework for such a theory, 
which has an infinite operator basis on just one hypercube. This paper is an account 
of that study. 

2. The lower-bound renormalization group transformation 

Given a Hamiltonian R ( x ) ,  any exact renormalization group is based on forming an 
iterative sequence X ( x )  + T ( x )  -+ V ( x )  +. . . . +. R("(x) through transformations of 
the form 

1 [dx]P(x ' ,  x) e"'"' (2.1) 1 = 

where conservation of the total free energy (or the partition function) requires a 
normalization condition on the otherwise as yet unspecified projection operator 
??(XI, x): 

J [dx ' ]P(x ' ,  x )  = I .  (2.2) 

Kadanoff's LBRG [ l ,  21 is an explicit, but only approximate, realization of such a 
program. It is based on two main ingredients: bond moving, and an optimized choice 
of a variational parameter (easily generalizable to more than one variational parameter). 
Bond moving can be described most easily here by replacing the original Hamiltonian 
R ( x )  by X(x)+GY(x)  in such a way that all interactions fall on independent hyper- 
cubes, i.e. such that the sum (integral) in (2.1) typically can be performed explicitly. 
Since bond moving implies (SY(x))  = 0 (where expectation values are taken relative 
to the original Hamiltonian), this is easily seen to give a lower bound on the actual 
free energy. The variational parameter(s) is then simply used to optimize this lower 
bound. 

In the original definition of the L B R G  [ I ,  21 for the two-dimensional Ising model, 
this scheme was actually carried out in two steps. First, an exact RG transformation, 
in the form of a decimation in which half of all original spins were integrated out [ 121, 
was applied to the starting Hamiltonian. This has the advantage of directly mapping 
us onto a Hamiltonian which is symmetric under an arbitrary permutation of spins in 
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each hypercube. We call this the symmetric LBRG. As emphasized by Burkhardt [ l l ] ,  
this first operation is not necessary; one can equally well start with a Hamiltonian 
without this permutation symmetry. In the case of the Ising model this gives a slightly 
different result. We shall here consider both types of transformations. As the symmetric 
LBRG is by far the simplest, we shall start with thatt. 

First we rewrite the action (1.1) in terms of the diagonalized SU(2) element 

(2.3) 

for 0 d cp s 4 ~ .  By relabelling K,, = J, the 'Hamiltonian' of the model then takes a 
more familiar-looking form 

where the subscripts simply refer to positions xi  on the lattice. 
As mentioned above, we begin by performing a spin decimation using the Hamil- 

tonian (2.4). We denote by W the spins that are integrated out, and by Z the spins 
that remain (see figure 1). Then every spin W interacts with 2d nearest-neighbour spins 
2, and the decimation transformation for one of those spins W can be written as 

e"'='= [d W] exp( K,, W 1 2, 
i = l  

where [d W] is the usual SU(2) Haar measure, written in terms of the new variables as 

[d W ]  d W  =---- 2-dQ sin2(q/2). 
7T 2T 

The integral (1.6) is straightforwardly evaluated by means of the following identity 
involving modified Bessel functions of order n, I,(x): 

l a )  j b l  

+ + + +  I a n  + + + +  

+ +  
+U+ 

+ + + +  
I C 1  

Figure 1. The decimation and bond moving in two dimensions. The dots denote the Z-spins 
and the crosses W-spins. ( a )  Shows the decimation in which the lattice is scaled by a 
factor A. ( b )  Shows how the W-spin lattice is embedded in the 2-spin lattice and ( c )  
shows how the bond moving transfers all the interactions into independent hypercubes. 

t Note that in order for the decimation transformation to map us onto a hypercubic lattice, we need in 
general to start with the original model on a body-centred hypercubic lattice. In the case of d = 2 this turns 
out to be equivalent to a rotated hypercubic lattice of different spacing, see figure 1. 
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and the result is 

up to an overall normalization constant, which of course turns out to be irrelevant. 
The new Hamiltonian A( 2 )  now describes the interactions between trivially renor- 

malized spins, 2, of larger lattice spacing. The full renormalized Hamiltonian is of 
course found by summing the Hamiltonian A ( 2 )  over all fundamental hypercubes of 
2d new spins Z,. As there are an infinite number of ways these 2d spins can interact 
among themselves, we must already at this point expand A ( 2 )  on an infinite basis of 
operators. Let us write 

where A,,(Z) is the part of the decimation Hamiltonian that can be built by interactions 
of n spins. In our case, where the ‘spins’ are traces of elements of SU(2) ,  self-interactions 
are also generated. A general n-spin interaction can hence be written as 

2 d  2 d  

where C ki = n. 
, = I  

K n x  C Z;’  
i = l  

(2.10) 

We determine the decimation relation for each coupling constant K,, from (2.8) 
by an ordinary Taylor expansion on the above basis. Thus, if we denote the right-hand 
side of (2.8) by $(Z, K , , ) ,  this gives us 

(2.11) 

The above relation gives all K,,, up to any given order n. But of course we have no 
a priori knowledge of how fast it converges. 

After the decimation we have on each hypercube 2d spins 2, that interact together 
as dictated by A(Z) and the above expansions. But if we look at the interactions 
between two particular spins, they can of course belong to several different hypercubes. 
The idea of bond moving is to move all interactions in such a way that all interactions 
lie within isolated hypercubes, so that no two hypercubes share interactions (see again 
figure 1). Combining this step with an RG projection operator of the form 

/ 2’1 \ 

9’( W, Z ) = e x p  p 1 Z,W, \ , = I  
(2.12) 

where p is a free variational parameter, one finally ends up with the LBRG transformation 
2’1 2 

e[A“W’l= I , = 1  [ d Z , ] e ~ p ( 2 ~ A ( Z ) - u ( z , p ) + p  t = I  C Z,W,)  (2.13) 

where the function u ( Z ,  p )  is determined by the normalization condition on P(Z, W): 
2 J  

e’(z*p)= 1 [d W] exp( pW ,F, Z,). (2.14) 

The relation (2.13) gives us the relation between the starting Hamiltonian A ( Z ) ,  
and the renormalized Hamiltonian A’( W). To turn this into a working iterative scheme 
that can help us determine the fixed point properties of the system under study, we 
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must again expand the new Hamiltonian on a given basis; this time, of course, for 
convenience chosen in accordance with the previous decimation transformation. Note 
that, in fact, the normalization condition (2.14) is identical in form to the integral 
encountered at the decimation. Hence the result is the same, and the LBRG can be 
written as 

A’( W )  =2dKo+1n [dZ,]X(Z,p)  exp (2.15) 

where 

(2.16) 

Recursion relations for the coupling constants of a given basis can be found as 
described earlier, i.e. by taking the appropriate number of partial derivatives and then 
setting all Z, = 0. As we clearly have an infinite set of different coupling constants, this 
would lead to an infinite number of non-trivially coupled recursion relations. Thus we 
again have to make a truncation of the renormalized Hamiltonian, and drop all terms 
in A(Z) in which more than a fixed number of spins interact. In order for such a 
truncation to be meaningful, one must first of all be sure that the relevant fixed point 
{ K : }  does indeed lie so close to the origin of all higher coupling constants that they 
can safely be ignored. But of course this condition is only necessary, not sufficient. 
The RG flow itself can at intermediate steps pass through regions of coupling-constant 
space where higher-order couplings are large. 

3. Keeping only quadratic interactions 

We first make an extremely drastic truncation down to just quadratic couplings. These 
are all of the form ZjZJ, with possibly i = j ,  and are illustrated graphically in figure 2 
for the case d = 2. 

0 0 0 0 

i o1  I bi - 
Figure 2. The 2-spin interactions in the case d = 2 .  stands for self-interactions of the 
type z:. 

The decimation transformation has already projected us down to the symmetric 
subspace in which the couplings illustrated by figures 2(b)  and ( c )  are equal. As we 
shall see shortly, this symmetric subspace is indeed stable under the LBRG transforma- 
tion. Including a constant term, our initial A(Z) is then of the form 

where it follows from the decimation transformation (2.1 1 )  that we have 

Ko=O and 2Kzl  = K2,= K i n .  (3.2) 
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In a similar manner we establish the recursion relations from (2.15) and (2.16).  
This gives us 

KI, = 2dK0+ In Bo KS, = i P 2 B 2  K ; *  = P2B11 (3.3) 

where X ( Z , p )  is as defined in (2.16),  the integral measure is given by (2 .6 ) ,  and we 
have defined 

(3 .4b)  

We have used numerical methods to solve the RG equations ( 3 . 3 ) ,  and hence obtain 
the RG flow in this simple truncated system. To this end, it is extremely efficient to 
make use of the formula 

dx  m f ( x )  = fi w,f(xj)+ R,  
, = I  

with 

7T 

w .  = - n + l  sin2( &) n + l  and xj = cos( 5) 

( 3 . 5 )  

for j = 0, .  , , , n. Comparing with the SU(2)  Haar measure of (2 .6 ) ,  the identity ( 3 . 5 )  
(with R,  + 0 as n -+ 00) is seen to be tailored for this SU(2)  integration problem. In 
fact, we have found it far more efficient than, say, Monte Carlo integration, even in 
cases of relatively high dimensionality. The number of terms kept in the sum (3.5) 
could typically be limited to n - 10-20. 

In both d = 2 and d = 3 dimensions we have found a fixed point structure and RG 

flow diagram as we should expect from the universality arguments connecting this 
model to a Z ( 2 )  invariant spin system. Starting on the original K,,-axis there are two 
attractive fixed points, corresponding to high-temperature and low-temperature sinks. 
In between there is one other fixed point, attractive along a critical surface crossing 
the original K,,-axis, repulsive in one other direction. This is the critical fixed point. 
This structure can be seen on a schematic flow diagram in figure 3 ( a )  for a fixed value 
of p .  

We have found this simple fixed point picture to be valid for a range of the parameter 
p,  see figure 3 ( b ) .  There we plot K z 2  of the three fixed points as a function of p .  

The LBRG now chooses a value p* (if it exists) such that the free energy around 
the fixed point is maximized at this value. To find this, and to compute critical exponents 
around the critical fixed point, we first linearize the recursion relations close to this 
critical point: 

At the critical point K *  we find that the matrix 2( p )  has two relevant eigenvalues, 
i.e. two eigenvalues larger than unity. One is the trivial A" = bd, where b is the rescaling 
factor of the RG transformation, here 6 = 2. The other, A I ,  can be related to the critical 
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0 0  

0.  6 

0 4  

Kl l  

0 2  

0 

- 0  2 

2 0 .  

1 0 .  

K2 2 

0. 

-1 0. 

- 0 1  0 0.1 0 2  0 3  0 4  0 2 5  0 50 0 7 5  
K2 1 P 

Figure 3. The case d = 2 and only 2-spin interactions: ( a )  shows a schematic flow diagram 
for p = p *  = 0.416 43 in which the fixed point structure can be seen. A is a low-temperature 
sink, B a high-temperature sink and C the critical fixed point. The draNn line is the critical 
line; ( b )  shows the value of the coupling K,z as a function of p .  

exponent a that describes the divergence of the specific heat at the critical point. The 
relation is (see e.g. [13]) 

d In b a=2--, 
In A ,  

Simultaneously we use the matrix 2?( p )  to determine the value of p that gives the 
optimized bound on the free energy. As shown by Kadanoff et a1 [2], this is equivalent 
to solving the equation 

U , " ( P ) W u ( P )  = o  (3.9) 

where u o ( p )  is the left eigenvector of 2 ( p )  associated with the eigenvalue A,,, and 
w(p)  is defined by 

(3.10) 

With these relations it is now straightforward to extract the optimal value of p ,  p * ,  
the corresponding fixed point {Kp*}, and the critical exponent a. It is now also 
straightforward to find numerically the point at which the critical hypersurface crosses 
the K,,-axis. By using the relation (3.2) this then gives us for d = 2 the critical coupling 
KZ,, of the original model. The results are shown in table 1, together with results 
obtained for the magnetization exponent p, the determination of which will be discussed 
next. 

Since the magnetization exponent p refers to the response to a 'magnetic field' 
coupling directly to W ( x ) ,  it is not surprising that in order to determine p we need 
to add such a term h Z r W ( x )  to the model [13]. The Hamiltonian is now no longer 
symmetric under the Z(2) transformation, and we need to include all odd operators 
as well, u p  to the given order+. In this first crude approximation this simply corresponds 

t We define even and odd operators according to their transformation properties under Z(2) .  
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Table I .  The optimal balues of the variational parameter p ,  in case of truncation down to 
2-spin interactions, both in d = 2 and d = 3. For this value of p ,  the couplings, K, ,  and 
K 2 , ,  the critical exponents a and P, and,  for d = 2, the critical temperature K:, , ,  are 
displayed. Those values are compared with other known results: (1)  exact values for the 
lsing model, (2)  values obtained from series expansion for the lsing model and (3)  values 
obtained with a Migdal-Kadanoff approximation for the SU(2I model. 

2 0.416 43 0.145 4 0.052 72 0.892 - 0.0600 0.279 

3 0.1 I d  7 0.022 18 0.017 80 0.266 0.0465 
(0) '  (0.125)' (0.2 138)' 

(0.08*0.04)' (0.3125*0.005)2 

to the magnetic field operator itself, i.e. a term of the form K ,  XiZt. This leads, of 
course, to new sets of recursion relations, in which we now also have to include all 
one-hypercube expectation values of odd operators, as the Hamiltonian is no longer 
even under Z(2). This new set of recursion relations is: 

(3.11) 

But since the critical fixed point we are interested in has KT = 0, the value of p* is 
unchanged. 

The matrix Y ( p )  in this case has three eigenvalues larger than unity. Two of these 
are just the A. and A ,  found earlier, and the third, A * ,  can be related to the magnetic 
index /3 through the relation [13] 

1 
In A ,  

p=- ( d  In b -In A 2 ) .  (3.12) 

The results, summarized in table 1, are compared with both expectations based on 
Z ( 2 )  universality and with earlier results obtained for the same model in the Migdal- 
Kadanoff RG approximation [ 141. As one should expect for such a crude approximation 
to the full untruncated LBRG method, results do not compare favourdbly at all with 
either set of numbersf. Only the fixed point structure has come out as expected for 
an Ising-like critical point. 

4. Including higher orders 

After what should really only be considered a warm-up exercise, we next want to 
systematically study how the LBRG changes as higher-order terms are included in the 
truncated Hamiltonian A(Z). To begin, we display in figure 4 the possible new 
interactions when we consider the Z(2) even sector of 4-spin interactions. In the 
symmetric case interaction ( b )  equals (c ) ,  ( d )  equals ( e )  and (f) equals ( 8 ) .  The 

t A negative index p from L B R G  seems also to come out of the ordinary two-dimensional lsing model on 
a triangular lattice [15]. 
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Figure 4. The 4-spin interactions in the case d = 2. Here + stands for self-interaction of 
the type Zi, A for Z i  and W for 24. 

Hamiltonian now takes the form 

(4.1) 

Using the same technique as described in section 3, we find that the decimation 
equations read 

KO= 0 2Kzl = K Z 2 =  K i n  
(4.2) 

Finally, from (2.15) we find the RG equations ofthis one-hypercube approximation to be 

Kh = 2dK0+ In bo K;r=P4(&, - ; ’ w I l )  

KS, = b2A 
(4.3) 

using the definitions in (3.4). 
We have solved the recursion relation (4.3) numerically for positive values of p 

(the equations are symmetric under exchange p t, - p )  in the case d = 2 ,  and we have 
found for almost all values of p that they have only one solution. Only in an  extremely 
short interval, 0.383 < p < 0.395, will there exist two attractive fixed points and  a critical 
point between them (see figure 5(a)). As one might expect, the relevant eigenvalue 
starts out at  the beginning of the interval with A = 1, and ends at  the end of the interval 
again with the value A = 1. In between it also remains very close to unity; (in contrast 
to the Ising value of A =2) .  The free energy cannot be maximized anywhere inside 
this narrow interval, hence it is maximized on the boundary where A = 1 .  The critical 
surface crosses the K2,-axis at a negative value; it is an antiferromagnetic fixed point. 
Due to the decimation transformation (4.2) it can, however, never be reached starting 
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G 1  0 2  0 3  0 4  0 5  0 6  
P 

Figure 5. The case d = 2 and truncation to 4-spin interactions. In ( a )  we display the 
coupling constant K,, as a function of p for those fixed points we found. One can see that 
only three fixed points exist simultaneously in an extremely short interval of  p ,  and we 
have a critical antiferromagnetic fixed point ( C )  there. In ( b )  we show a schematic flow 
diagram, projected onto the K 2 , - K Z Z  plane, for one value of p in the intenal, p = 0.39. 
Also shown is the critical hypersurface. 

from the original model (1.2). In fact, this fixed point on a very narrow p-interval is 
probably completely spurious. What happens can be seen in more detail in figure 6, 
where we display flow diagrams for two values of p ,  one just before the second attractive 
fixed point is created, and one just after the first one disappears. By comparing those 
diagrams with figure 5 (  b )  one sees a 'remnant' of the fixed points even when they have 
disappeared as the flow is forced towards those regions, and only bends off towards 
the true fixed point extremely slowly. By comparing with figure 4(a)  we also note that 
both attractive fixed points lie very close to where the high-temperature fixed point is 
positioned in the case of a truncation to just 2-spin interactions. There is also an 
attractive area, but no fixed point, close to where the low-temperature fixed point used 
to be. It is as if adding the 4-spin operators made the low-temperature fixed point 
unstable?. As this is a very surprising result, we have performed a number of tests. 
For example, we have increased the numerical accuracy of our integration procedure 
(i.e. increased n in (3.5)), but have found that our results are already completely stable. 
We have tested directly if, starting with different values of the original coupling K,,,, 
we always flow into the same fixed point, and have found that this is indeed the case. 

In the case of d = 3, we find similar results, with no critical hypersurface crossing 
the Kz2-axis. 

The conclusion is that the simple fixed-point structure of the lowest-order approxi- 
mation appears to be unstable towards higher-order terms in the expansion of the 
one-hypercube Hamiltonian A ( 2 ) .  Although this is a disturbing result, we must keep 
in mind that the method was not originally designed for such a system, and that our 

t The fact that one nevertheless finds an attractive region around the position where one would expect the 
low-temperature fixed point forced us to investigate more closely whether numerical uncertainties could be 
the cause o f  this behaviour. However, we have not found any evidence substantiating this. 
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Figure 6. The same case as figure 5. Here we have flow diagrams for two values of p ;  one 
just before the antiferromagnetic fixed point is created and one just after it is destroyed. 
The broken circles denote attractive areas, and in ( a )  we have such area where the fixed 
point B ought to be. There is a slow flow line (broken) from B to the attractive fixed point 
A. This picture is reversed in ( 6 ) .  Otherwise the flows are identical, and both have an 
attractive area where the low-temperature fixed point used to be in the approximation of 
2-spin interactions. In ( a ) ,  p = 0.382, and is ( b )  p = 0.396. 

definitions contain a large amount of arbitrariness. For example, in translating 
Kadanoffs original method [ 1,2]  to this system, we have chosen the projection operator 
of the form (2.12). Another equally valid choice, which also could be thought of as 
derived from Kadanoff’s prescription would be e.g. 9( W, 2) = exp[ p X i  Tr(Zi Wi)], 
where we have indicated the trace explicitly in order to distinguish it from the 
definition (2.12). (In this notation (2.12) would correspond to 8( W, 2)  = 
exp[p X i  Tr(Zi)Tr( Wi)].) Interestingly, we can actually also work with a purely 
imaginary p ,  p + ip. This still leaves the recursion relations (4.3) completely real, with 
basically only the modified Bessel function, I n ( x ) ,  replaced by J n ( x ) ,  where J, , (x)  are 
the ordinary Bessel functions. Equally remarkable, the RG equations of this new 
definition leads to an almost identical flow pattern with the same problems as discussed 
above. 

Since the RG flow is so substantially altered by adding the next-order terms in our 
expansion, it is of interest to identify precisely which terms in (4.1) are responsible 
for this change. It actually turns out that certain combinations of terms destroy the 
flow pattern of the lowest-order approximation. In table 2 we show a typical example, 
here for p = 0.4 and d = 2. We have indicated how the critical surface appears and 
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Table 2. The table shows, in the case d = 2, how the existence of a critical hypersurface 
crossing the K,,,-axis depends on different combinations of interaction included in the 
Hamiltonian. means that a corresponding interaction is included, y means that we found 
a critical hypersurface and n that we did not. 

K 2 2  K41 K4Z K43 K44 K45 K 2 ,  K Z 2  K41 K42 K43 K44 K45 

. . . Y 
Y 

Y 
e n 

* Y  

Y . . n 

* Y  

. e n . . 

. . . . n . . 
e . . . n . . n . * n  . . n 

* Y  
* Y  

. . . . n . . . . n . . * Y  

* Y  
* Y  

. . . n . . . . . . . . n . * n  . . * n  . . e n  . . . n . . . * n  . e n  . . . * n  . . . . . e n  . . . . * n  

disappears as the various combinations of 4-spin operators are added. It is clear from 
this example that it is not one particular term among those of (4.1) which so drastically 
changes the RG picture. 

We also tried to add all possible 6-spin interactions to the Hamiltonian (4.1) and 
have calculated the corresponding recursion relations. But we have found, for the case 
d = 2 ,  that those relations give results very similar to those where only 4-spin interactions 
were included. 

Having seen that the expansion seems to fail in this case, one would clearly like 
to know if this might be a consequence of staying only inside the symmetric subspace 
of operators in which the Hamiltonian is symmetric under exchange of any two spins. 
We have therefore extended the above analysis to the general case in which one simply 
starts with (2.4) and then applies the LBRG without an initial decimation transformation. 
In the case of d = 2 ,  and truncation down to 4-spin interactions, this leads to the 
interactions in figures 2 and 4, without the identifications made to bring us to the 
symmetric subspace. The corresponding Hamiltonian is 

4 4 2 A 
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The RG flow pattern of this general set of equations is far more complex than that of 
the symmetric LBRG. For example choosing a sufficiently large variational parameter 
p ,  one easily find regions of coupling-constant space at which the RG flow does not 
converge on stable fixed points, but rather enters apparently unending limit cycles. We 
show an example of this in figure 7 .  The number of fixed points is bigger than that of 
the symmetric subspace, since of course we already have the fixed points of the 
symmetric subspace. But we have not been able to find any critical point in a critical 
hypersurface crossing the K,,-axis. So again the assumption of a rapidly converging 
expansion of simple local spin interactions for this SU(2) model does not seem to be 
justified within the framework of the LBRG. 

0 0 2  0 4  0 6  0 8  
K, 1 

Figure 7. A projection, onto the K , , - K , 2  plane, of a flow for the non-symmetric case which 
shows the existence of limit cycles. This is for d = 2, p = 0.6 and truncation to 4-spin 
interactions. We start with all couplings equal to zero, then follow the broken line to an 
attractive area (broken circle). As there is no fixed point there the flow starts to jump 
abruptly around. After about 50 iterations it enters an apparently stable limit cycle (the 
full  lines). 

+ Here the spins are numbered rotating on the square. As the Hamiltonian, and the integrals in (3.4), are 
no longer invariant under arbitrary permutation of the spins, but only those belonging to opposite corners, 
we have written out all the indices of the integrals to avoid confusion. 
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5. Conclusions 

The object of this paper was to investigate whether Kadanoff's LBRG transformation 
can be applied successfully to spin models with an infinite basis of operators on one 
hypercube. The SU(2) example, chosen because it is of interest for the study of 
deconfinement phase transitions in strongly interacting matter, should not be atypical 
in any respect. We have found that the most drastic truncation of the operator basis 
to just quadratic terms (nearest-neighbour interactions and self-interactions) leads to 
a fixed point structure compatible with other approaches. The critical indices of this 
first, and very crude, approximation are not close to Ising values (as expected from 
universality arguments), but this is hardly surprising. The problem lies in the fact that 
this operator truncation appears to be inconsistent, since higher-order terms can 
completely destroy this picture. Curiously, if instead of directly integrating the basic 
building blocks (3.4) one performs an analytical expansion of these integrals, one finds 
a simple set of coupled polynomials recursion relations. These equations, which may 
be viewed as the direct generalization of the method of [6] to this model, do  show the 
anticipated fixed-point structure. However, the expansion at the optimized choice p * ,  
which is based on fewer approximations, is indeed even less justified for this model 
than the expansions discussed in detail here. So it is difficult to regard this as more 
than an accidental result. At least, if one attempts to improve this method in the manner 
suggested here, one runs into difficulties. We find it challenging to see if alternative 
expansions, combined with the LBRG scheme, can be found to overcome this problem. 
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